Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).

Identifieur interne : 002C21 ( Main/Exploration ); précédent : 002C20; suivant : 002C22

A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).

Auteurs : Naoki Takata [Suède] ; Maria E. Eriksson

Source :

RBID : pubmed:22871142

Abstract

BACKGROUND

The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches.

RESULTS

We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter.

CONCLUSIONS

The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.


DOI: 10.1186/1746-4811-8-30
PubMed: 22871142
PubMed Central: PMC3476444


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).</title>
<author>
<name sortKey="Takata, Naoki" sort="Takata, Naoki" uniqKey="Takata N" first="Naoki" last="Takata">Naoki Takata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden. maria.eriksson@plantphys.umu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Eriksson, Maria E" sort="Eriksson, Maria E" uniqKey="Eriksson M" first="Maria E" last="Eriksson">Maria E. Eriksson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22871142</idno>
<idno type="pmid">22871142</idno>
<idno type="doi">10.1186/1746-4811-8-30</idno>
<idno type="pmc">PMC3476444</idno>
<idno type="wicri:Area/Main/Corpus">002938</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002938</idno>
<idno type="wicri:Area/Main/Curation">002938</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002938</idno>
<idno type="wicri:Area/Main/Exploration">002938</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).</title>
<author>
<name sortKey="Takata, Naoki" sort="Takata, Naoki" uniqKey="Takata N" first="Naoki" last="Takata">Naoki Takata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden. maria.eriksson@plantphys.umu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Eriksson, Maria E" sort="Eriksson, Maria E" uniqKey="Eriksson M" first="Maria E" last="Eriksson">Maria E. Eriksson</name>
</author>
</analytic>
<series>
<title level="j">Plant methods</title>
<idno type="eISSN">1746-4811</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22871142</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1746-4811</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Plant methods</Title>
<ISOAbbreviation>Plant Methods</ISOAbbreviation>
</Journal>
<ArticleTitle>A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).</ArticleTitle>
<Pagination>
<MedlinePgn>30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1746-4811-8-30</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Takata</LastName>
<ForeName>Naoki</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden. maria.eriksson@plantphys.umu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eriksson</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Methods</MedlineTA>
<NlmUniqueID>101245798</NlmUniqueID>
<ISSNLinking>1746-4811</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22871142</ArticleId>
<ArticleId IdType="pii">1746-4811-8-30</ArticleId>
<ArticleId IdType="doi">10.1186/1746-4811-8-30</ArticleId>
<ArticleId IdType="pmc">PMC3476444</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3098-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 May;47(5):601-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Sep;47(9):1229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16887843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19088330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2009;5:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(6):e5812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19503835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(11):1699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19876029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1264-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20407024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010;3:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):611-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2011;7(1):30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21961694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1997 Sep;61(9):1580-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9339563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(4):455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10406127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2514-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2006;2:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 May;27(5):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Mar;28(3):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19048258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):1051-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):526-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1993 Oct;4(5):583-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Feb 24;267(5201):1161-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7855595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Sep;25(6):989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Mar 1;6(3):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Nov;256(5):581-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9413443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2911-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976238</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Eriksson, Maria E" sort="Eriksson, Maria E" uniqKey="Eriksson M" first="Maria E" last="Eriksson">Maria E. Eriksson</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Takata, Naoki" sort="Takata, Naoki" uniqKey="Takata N" first="Naoki" last="Takata">Naoki Takata</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C21 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C21 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22871142
   |texte=   A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22871142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020